top of page

Conference Publications

C67 [DATE'24] M. Morsali, S. Tabrizchi, D. Najafi, M. Imani, M. Nikdast, A. Roohi, and S. Angizi, “OISA: Architecting an Optical In-Sensor Accelerator for Efficient Visual Computing,” Design, Automation and Test in Europe (DATE), Valencia, Spain, March 25-27, 2024 (Accepted).

C66 [DATE'24] R. Zhou, S. Ahmed, A. Roohi, A. Siraj Rakin, S. Angizi, “DRAM-Locker: A General-Purpose DRAM Protection Mechanism against Adversarial DNN Weight Attacks,” Design, Automation and Test in Europe (DATE), Valencia, Spain, March 25-27, 2024 (Accepted)

C65 [DATE'24] S. Tabrizchi, S. Angizi, and A. Roohi, “DIAC: Design Exploration of Intermittent-Aware Computing Realizing Batteryless Systems ,” Design, Automation and Test in Europe (DATE), Valencia, Spain, March 25-27, 2024 (Accepted).

C64 [ICRC'23] M. Morsali, S. Tabrizchi, M. Liehr, N. Cady, M. Imani, A. Roohi, and S. Angizi, “Deep Mapper: A Multi-Channel Single-Cycle Near-Sensor DNN Accelerator,” The 8th IEEE International Conference on Rebooting Computing (ICRC), San Diego, CA, USA, December 5-6, 2023 (Accepted).

C63 [MWSCAS'23] D. Vungarala, M. Morsali, S. Tabrizchi, A. Roohi, and S. Angizi, “Comparative Study of Low Bit-width DNN Accelerators: Opportunities and Challenges,” IEEE 66th International Midwest Symposium on Circuits and Systems (MWSCAS), Phoenix, Arizona, USA, Aug 6-9, 2023 (Accepted).

 

C62 [ISLPED'23] S. Tabrizchi, S. Angizi, and A. Roohi, “Ocellus: Highly Parallel Convolution-in-Pixel Scheme Realizing Power-Delay-Efficient Edge Intelligence,” IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Vienna, Austria, August 7-8, 2023.

C61 [GLSVLSI'23] M. Morsali, M. Nazzal, A. Khreishah, and S. Angizi, “IMA-GNN: In-Memory Acceleration of Centralized and Decentralized Graph Neural Networks at the Edge,” 33rd edition of Great Lakes Symposium on VLSI (GLSVLSI), Knoxville, TN, USA, June 5-7, 2023.           

(Best Paper Award)

C60 [GLSVLSI'23] S. Tabrizchi, R. Gaire, S. Angizi, and A. Roohi, “SenTer: A Reconfigurable Processing-in-Sensor Architecture Enabling Efficient Ternary MLP,” 33rd edition of Great Lakes Symposium on VLSI (GLSVLSI), Knoxville, TN, USA, June 5-7, 2023.

 

C59 [GLSVLSI'23] N. Kochar, L. Ekiert, D. Najafi, D. Fan, and S. Angizi, “Accelerating Low Bit-width Neural Networks at the Edge, PIM or FPGA: A Comparative Study,” 33rd edition of Great Lakes Symposium on VLSI (GLSVLSI), Knoxville, TN, USA, June 5-7, 2023.

C58 [ISQED'23] M. Morsali, R. Zhou, S. Tabrizchi, A. Roohi, and S. Angizi, “XOR-CiM: An Efficient Computing-in-SOT-MRAM Design for Binary Neural Network Acceleration,” International Symposium on Quality Electronic Design (ISQED), San Francisco, California, USA, April 5-7, 2023.

C57 [ISCAS'23] S. Tabrizchi, M. Morsali, S. Angizi, and A. Roohi, “NeSe: Near-Sensor Event-Driven Scheme for Low Power Energy
Harvesting Sensors,” IEEE International Symposium on Circuits & Systems (ISCAS), Monterey, California, USA, May 21-25, 2023 (Accepted).

C56 [DATE'23] R. Zhou, S. Tabrizchi, M. Morsali, A. Roohi, and S. Angizi, “P-PIM: A Parallel Processing-in-DRAM Framework Enabling RowHammer Protection,” Design, Automation and Test in Europe (DATE), Antwerp, Belgium, April 17-19, 2023.

 

C55 [IGSC'22] E. Lattanzio, R. Zhou, A. Roohi, A. Khreishah, D. Misra, and S. Angizi, “Toward a Behavioral-Level End-To-End Framework for Silicon Photonics Accelerators,” IEEE International Green and Sustainable Computing Conference (IGSC), Virtual, October 24 - 25, 2022.

C54 [ICMLA'22] A. Nezhadi, S. Angizi, and A. Roohi, “semiMul: Floating-Point Free Implementations for Efficient and Accurate Neural Network Training,” IEEE International Conference on Machine Learning and Applications (ICMLA), Nassau, The Bahamas, December 12 - 15, 2022.

C53 [ICCD'22] S. Tabrizchi, S. Angizi, and A. Roohi, “TizBin: A Low-Power Image Sensor with Event and Object Detection Using Efficient Processing-in-Pixel Schemes,” IEEE International Conference on Computer Design (ICCD), Lake Tahoe, USA, October 23 - 26, 2022.

 

C52 [ICCAD'22] R. Zhou, A. Roohi, D. Misra, and S. Angizi, “ReD-LUT: Reconfigurable In-DRAM LUTs Enabling Massive Parallel Computation,”  International Conference on Computer Aided Design (ICCAD), San Diego, California, USA, 30 October - 3 November, 2022.

C51 [ESWEEK'22] M. Abedin, A. Roohi, N. Cady, and S. Angizi, “A Processing-in-Pixel Accelerator based on Multi-level HfOx ReRAM,” Embedded Systems Week- International Conference on Compilers, Architectures, and Synthesis for Embedded Systems (ESWEEK-CASES), Hybrid-Shanghai, October 07-14, 2022.

C50 [ESSCIRC'22] S. Angizi, A. Sridharan, S. Kiran Cherupally, F. Zhang, J. Seo, and D. Fan, “A 1.23-GHz 16-Kb Programmable and Generic Processing-in-SRAM Accelerator in 65nm,” European Solid-State Circuits Conference (ESSCIRC), Milan, Italy, September 19-22, 2022.

C49 [ISLPED'22] R. Zhou, A. Roohi, D. Misra, and  S. Angizi, “FlexiDRAM: A Flexible in-DRAM Framework to Enable Parallel General-Purpose Computation,” IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Boston, MA, USA, August 1-3, 2022.

C48 [MWSCAS'22]  S. Tabrizchi, S. Angizi, and A. Roohi, “Design and Evaluation of a Robust Power-Efficient Ternary SRAM Cell,” 65th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Virtual, August 7-10, 2022.

C47 [DCAS'22]  A. Nezhadi, S. Angizi, and A. Roohi, “EaseMiss: HW/SW Co-Optimization for Efficient Large Matrix-Matrix Multiply Operations,” IEEE Dallas Circuits and Systems (DCAS), Virtual, June 17-19, 2022.

C46 [HOST'22]  A. Roohi and  S. Angizi, “Efficient Targeted Bit-Flip Attack Against the Local Binary Pattern Network,” IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Washington DC, USA, June 27-30, 2022.

C45 [ISCAS'22]  S. Tabrizchi, S. Angizi, and A. Roohi, “SCiMA: a Generic Single-Cycle Compute-in-Memory Acceleration Scheme for Matrix Computations,” IEEE International Symposium on Circuits & Systems (ISCAS), Virtual, 28 May-01 June, 2022.

C44 [ISQED'22] S. Angizi, and A. Roohi, “Integrated Sensing and Computing using Energy-Efficient Magnetic Synapses,” International Symposium on Quality Electronic Design (ISQED), Virtual, 6-8 April, 2022.

C43 [ISQED'22]  A. Roohi, S. Angizi,  P. NavaeiLavasani, M. Taheri, “ReFACE: Efficient Design Methodology for Acceleration of Digital Filter Implementations,” International Symposium on Quality Electronic Design (ISQED), Virtual, 6-8 April, 2022.

C42 [ICCAD'21]  A. Roohi, M. Taheri, S. Angizi,  and D. Fan, “RNSiM: Efficient Deep Neural Network Accelerator Using Residue Number Systems,” International Conference on Computer Aided Design (ICCAD), Nov. 1-4, 2021

C41 [GLSVLSI'21] S. Angizi, A. Roohi, M. Taheri, and D. Fan, “Processing-in-Memory Acceleration of MAC based Applications Using Residue Number System: A Comparative Study,” 31st edition of Great Lakes Symposium on VLSI (GLSVLSI), Virtual, June 22-25, 2021.

C40 [DAC'21] F. Zhang, S. Angizi and D. Fan, “Max-PIM: Fast and Efficient Max/Min Searching in DRAM,” IEEE/ACM Design Automation Conference (DAC), San Francisco, CA, July 11-15, 2021. 

C39 [DAC'21] F. Zhang, S. Angizi, N. Ahmed Fahmi, W. Zhang, and D. Fan, “PIM-Quantifier: A Processing-in-Memory Platform for Genome Quantification,” IEEE/ACM Design Automation Conference (DAC), San Francisco, CA, July 11-15, 2021. 

 

C38 [SOCC’20] L. Yang, Z. He, S. Angizi and D. Fan, “Processing-In-Memory Accelerator for Dynamic Neural Network with Run-Time Tuning of Accuracy, Power and Latency,”33rd IEEE International System-on-Chip Conference (SOCC), September 8-11, 2020 (invited).

C37 [GLSVLSI’20]  S. Angizi, W. Zhang and D. Fan, “Exploring DNA Alignment-in-Memory Leveraging Emerging SOT-MRAM,”30th edition of the ACM Great Lakes Symposium on VLSI (GLSVLSI), Beijing, China, September 8-11, 2020 (Virtual).

C36 [GLSVLSI’20] D. Reis, D. Gao, S. Angizi, X. Yin, D. Fan, M. Niemier, C. Zhuo and X.S. Hu„ “Modeling and Benchmarking Computing-in-Memory for Design Space Exploration,”30th edition of the ACM Great Lakes Symposium on VLSI(GLSVLSI), Beijing, China, September 8-11, 2020 (Virtual).

 

C35 [DAC’20] S. Angizi, N. Ahmed Fahmi, W. Zhang, and D. Fan, “PIM-Assembler: A Processing-in-Memory Platform for Genome Assembly,” IEEE/ACM Design Automation Conference (DAC), San Francisco, CA, July 19-23, 2020. 

C34 [DATE’20] S. Angizi, J. Sun, W. Zhang, and D. Fan, “PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment,” Design, Automation and Test in Europe (DATE), 09-13 March 2020, ALPEXPO, Grenoble, France. 

C33 [ASPDAC’20] L. Yang, S. Angizi, and D. Fan, “A Flexible Processing-in-Memory Accelerator for Dynamic Channel-Adaptive Deep Neural Networks,” Asia and South Pacific Design Automation Conference (ASP-DAC) Jan. 13-16, 2020, Beijing, China.

C32 [ISVLSI’19] S. Angizi, Z. He, D. Reis, X. S. Hu, W. Tsai, S. J. Lin, and D. Fan, “Accelerating Deep Neural Networks in Processing-in-Memory Platforms: Analog or Digital Approach?,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI) , June 15-17, 2019, Las Vegas, Miami, Florida, USA.

C31 [NANOARCH’19] S. Angizi and D. Fan, “Deep Neural Network Acceleration in Non-Volatile Memory: A Digital Approach?,” IEEE/ACM International Symposium on Nanoscale Architectures, 17-19 July 2019, Qingdao, CHINA.

C30 [ICCAD’19] S. Angizi, and D. Fan, “ReDRAM: A Reconfigurable Processing-in-DRAM Platform for Accelerating Bulk Bit-Wise Operations,” IEEE/ACM International Conference on Computer Aided Design (ICCAD), 4-7 November 2019, Westminster, CO, USA.

C29 [DAC’19] S. Angizi, J. Sun, W. Zhang and D. Fan, “AlignS: A Processing-In-Memory Accelerator for DNA Short Read Alignment Leveraging SOT-MRAM,” IEEE/ACM Design Automation Conference (DAC), June 2-6, 2019, Las Vegas, NV, USA.

C28 [GLSVLSI’19] S. Angizi and D. Fan, “GraphiDe: A Graph Processing Accelerator leveraging In-DRAM-Computing,” ACM Great Lakes Symposium on VLSI (GLSVLSI) , May 9-11, 2019, Washington, D.C., USA. (Best Paper Award)

C27 [DATE’19] S. Angizi, J. Sun, W. Zhang and D. Fan, “GraphS: A Graph Processing Accelerator Leveraging SOT-MRAM,” Design, Automation and Test in Europe (DATE), March 25-29, 2019, Florence, Italy.

C26 [ASPDAC’19] S. Angizi, Z. He and D. Fan, “ParaPIM: A Parallel Processing-in-Memory Accelerator for Binary-Weight Deep Neural Networks,” Asia and South Pacific Design Automation Conference (ASP-DAC), Jan. 21-24, 2019, Tokyo, Japan.

C25 [ISQED’19] A. Roohi, S. Angizi, D. Fan and R. F. DeMara, “Processing-In-Memory Acceleration of Convolutional Neural Networks for Energy-Efficiency, and Power-Intermittency Resilience,” International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 6-7 March, 2019.

C24 [ICCD’18] A. S. Rakin, S. Angizi, Z. He and D. Fan, “PIM-TGAN: A Processing-in-Memory Accelerator for Ternary Generative Adversarial Networks,” IEEE International Conference on Computer Design (ICCD), Oct. 7-10, 2018, Orlando, FL, USA.

C23 [ICCAD’18] S. Angizi, Z. He and D. Fan, “DIMA: A Depthwise CNN In-Memory Accelerator,” IEEE/ACM International Conference on Computer Aided Design (ICCAD), Nov. 5-8, 2018, San Diego, CA, USA.

C22 [ISVLSI’18] Z. He, S. Angizi, A. S. Rakin and D. Fan, “BD-NET: A Multiplication-less DNN with Binarized Depthwise Separable Convolution,” IEEE Computer Society Annual Symposium on VLSI, July 9-11, 2018, Hong Kong, CHINA. (Best Paper Award)

C21 [ISVLSI’18] Z. He, S. Angizi and D. Fan, “Accelerating Low Bit-Width Deep Convolution Neural Network in MRAM,” IEEE Computer Society Annual Symposium on VLSI , July 9-11, 2018, Hong Kong, CHINA.

C20 [GLSVLSI’18] S. Angizi, Z. He, Y. Bai, R. F. DeMara, J. Han, M. Lin and D. Fan, “Leveraging Spintronic Devices for Efficient Approximate Logic and Stochastic Neural Network,” ACM Great Lakes Symposium on VLSI (GLSVLSI), May 23-25, 2018 Chicago, IL, USA.

C19 [DAC’18] S. Angizi , Z. He, A. S. Rakin and D. Fan, “CMP-PIM: An Energy-Efficient Comparator-based Processing-In-Memory Neural Network Accelerator,” IEEE/ACM Design Automation Conference (DAC), June 24-28, 2018, San Francisco, CA, USA.

C18 [DAC’18] S. Angizi, Z. He and D. Fan, “PIMA-Logic: A Novel Processing-in-Memory Architecture for Highly Flexible and Energy-Efficient Logic Computation,” IEEE/ACM Design Automation Conference (DAC), June 24-28, 2018, San Francisco, CA, USA.

C17 [ASPDAC’18] S. Angizi, Z. He, F. Parveen and D. Fan, “IMCE: Energy-Efficient Bit-Wise In-Memory Convolution Engine for Deep Neural Network,” Asia and South Pacific Design Automation Conference (ASP-DAC), Jan. 22-25, 2018, Jeju Island, Korea.

C16 [ASPDAC’18] F. Parveen, Z. He, S. Angizi and D. Fan, “HieIM: Highly Flexible In-Memory Computing using STT MRAM,” Asia and South Pacific Design Automation Conference (ASP-DAC), Jan. 22-25, 2018, Jeju Island, Korea.

C15 [NCAMA’17] S. Angizi and D. Fan, “IMC: Energy-Efficient In-Memory Convolver for Accelerating Binarized Deep Neural Network,” Neuromorphic Computing Symposium: Architectures, Models, and Applications, July 17-19, 2017, Knoxville, Tennessee.

C14 [ICCD’17] D. Fan and S. Angizi, “Energy Efficient In-Memory Binary Deep Neural Network Accelerator with Dual-Mode SOT-MRAM,” IEEE International Conference on Computer Design (ICCD), Nov. 5-8, 2017, Boston, MA.

C13 [ICCD’17] Z. He, S. Angizi, and D. Fan, “Exploring STT-MRAM based In-Memory Computing Paradigm with Application of Image Edge Extraction,” IEEE International Conference on Computer Design (ICCD), Nov. 5-8, 2017, Boston, MA.

C12 [ISLPED’17] F. Parveen, S. Angizi, Z. He and D. Fan, “Low Power In-Memory Computing based on Dual-Mode SOT- MRAM,” IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), July 24-26, 2017, Taipei, Taiwan.

C11 [NANOARCH’17] Z. He, S. Angizi, F. Parveen and D. Fan, “High Performance and Energy-Efficient In-Memory Computing Architecture based on SOT-MRAM,” IEEE/ACM International Symposium on Nanoscale Architectures, July 25- 26, 2017, Newport, USA.

C10 [ISVLSI’17] D. Fan, S. Angizi and Z. He, “In-Memory Computing with Spintronic Devices,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI), July 3-5, 2017, Bochum, Germany (invited).

C9 [ISVLSI’17] S. Angizi, Z. He, F. Parveen and D. Fan, “RIMPA: A New Reconfigurable Dual-Mode In-Memory Processing Architecture with Spin Hall Effect-Driven Domain Wall Motion Device,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI), July 3-5, 2017, Bochum, Germany.

C8 [ISVLSI’17] F. Parveen, Z. He, S. Angizi and D. Fan, “Hybrid Polymorphic Logic Gate with 5-Terminal Magnetic Domain Wall Motion Device,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI), July 3-5, 2017, Bochum, Germany. (Best Paper Award)

C7 [MWSCAS’17] D. Fan, Z. He and S. Angizi, “Leveraging Spintronic Devices for Ultra-Low Power In-Memory Computing: Logic and Neural Network,” 60th IEEE International Midwest Symposium on Circuits and System (MWSCAS), Aug. 6-9, 2017, Boston, MA, USA (invited)

C6 [ISCAS’17] F. Parveen, S. Angizi, Z. He and D. Fan, “Hybrid Polymorphic Logic Gate Using 6 Terminal Magnetic Domain Wall Motion Device,” IEEE International Symposium on Circuits & Systems (ISCAS), Baltimore, MD, USA, May 28-31, 2017.

C5 [GLSVLSI’17] S. Angizi, Z. He, and D. Fan, “Energy Efficient In-Memory Computing Platform Based on 4-Terminal Spin Hall Effect-Driven Domain Wall Motion Devices”, 27th GLSVLSI, Banff, Alberta, Canada, May 10-12, 2017.

C4 [GLSVLSI’17] Z. He, S. Angizi, F. Parveen, and D. Fan, “Leveraging Dual-Mode Magnetic Crossbar for Ultra-low Energy In- Memory Data Encryption”, 27th GLSVLSI, Banff, Alberta, Canada, May 10-12, 2017.

C3 [ISQED’17] S. Angizi, Z. He, R. DeMara and D. Fan, “Composite Spintronic Accuracy-Configurable Adder for Low Power Digital Signal Processing,” 18th International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 13-15 March, 2017.

C2 [CADS’15] A. M. Chabi, A. Roohi, R. F. DeMara, S. Angizi, K. Navi, and H. Khademolhosseini, "Cost-efficient QCA reversible combinational circuits based on a new reversible gate," in Computer Architecture and Digital Systems (CADS), 2015 18th IEEE CSI International Symposium on, 2015, pp. 1-6.

C1 [INIS’15] M. R. Jahangir, S. Sheikhfaal, S. Angizi, K. Navi, and F. Ahmad, Designing Nanoelectronic-compatible 8-bit Square Root Circuit by Quantum-dot Cellular Automata, In Proceeding of The IEEE International Symposium on Nanoelectronic and Information Systems, Indore, India, December 21st-23rd, 2015.

Peer-Reviewed Journal Publications

J47 [TCAD'23] A. Roohi, S. Tabrizchi, M. Morsali, D. Pan, and S. Angizi, “PiPSim: A Behavior-Level Modeling Tool for CNN Processing-in-Pixel Accelerators”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), IEEE, 2023.

J46 [TED'23] M. Morsali, S. Tabrizchi, A. Marshall, A. Roohi, D. Misra, and S. Angizi, “Design and Evaluation of a Near-Sensor Magneto-Electric

FET-based Event Detector”, IEEE Transactions on Electron Devices (TED), IEEE, 2023.

J45 [TETC'23] S. Angizi, S. Tabrizchi, D. Pan and A. Roohi, “PISA: A Non-Volatile Processing-In-Sensor Accelerator for Imaging Systems”, IEEE Transactions on Emerging Topics in Computing (TETC), IEEE, 2023.

J44 [TETC'23] S. Angizi, M. Morsali, S. Tabrizchi, and A. Roohi, “A Near-Sensor Processing Accelerator for Approximate Local Binary Pattern Networks”, IEEE Transactions on Emerging Topics in Computing (TETC), IEEE, 2023.

J43 [JETCAS'23] S. Tabrizchi, A. Nezhadi, S. Angizi, and A. Roohi, “AppCiP: Energy-Efficient Approximate Convolution-in-Pixel Scheme for Neural Network Acceleration”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), IEEE, Vol. 13, No. 1, pp. 225-236, 2023. 

J42 [JETCAS'23] F. Zhang, S. Angizi, J. Sun, W. Zhang, and D. Fan, “Aligner-D: Leveraging in-DRAM Computing to Accelerate DNA Short Read Alignment”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), IEEE, Vol. 13, No. 1, pp. 332-343, 2023.

 

J41 [CAL'22] R. Zhou, S. Tabrizchi, A. Roohi, and S. Angizi, “LT-PIM: An LUT-based Processing-in-DRAM Architecture with RowHammer Self-Tracking”, IEEE Computer Architecture Letters (CAL), IEEE, Vol. 21, No. 2, pp. 141 - 144, 2022.

 

J40 [JLPEA'22] S. Tabrizchi, S. Angizi, and A. Roohi, “Ocelli: Efficient Processing-in-Pixel Array Enabling Edge Inference of Ternary Neural Networks”, Journal of Low Power Electronics and Applications (JLPEA), MDPI, Vol. 12, No. 4, 2022.

J39 [JXCDC'22] M. Abedin, A. Roohi, M. Liehr, N. Cady, and S. Angizi, “MR-PIPA: An Integrated Multi-level RRAM (HfOx) based Processing-In-Pixel Accelerator”, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits (JXCDC), IEEE, Vol. 8, No. 2, pp. 59 - 67

 

J38 [TETC'22] S. Sheikhfaal, S. Angizi, and R. F. DeMara, “Energy-Efficient Recurrent Neural Network with MRAM-based Probabilistic Activation Functions”, IEEE Transactions on Emerging Topics in Computing (TETC), IEEE, 2022.

J37 [Micromachines'22] M. H. Alali, A. Roohi, S. Angizi, and J. S. Deogun, “Enabling Intelligent IoTs for Histopathology Image Analysis Using Convolutional Neural Networks,” Micromachines, MDPI, Vol. 13, No. 8, 2022.

J36 [TODAES'21] S. Angizi, N. Khoshavi, A. Marshall, P. Dowben and D. Fan,  “MeF-RAM: A New Non-Volatile Cache Memory Based on Magneto-Electric FET,” ACM Transactions on Design Automation of Electronic Systems, (TODAES), ACM, Vol. 27, No. 2, pp. 1–18, 2021.

J35 [TCASI'20] H. Jiang, S. Angizi, D. Fan, J. Han and L. Liu “Non-Volatile Approximate Arithmetic Circuits using Scalable Hybrid Spin-CMOS Majority Gates,” IEEE Transactions on Circuits and Systems I: Regular Papers (TCASI), IEEE, Vol. 68, No. 3, pp. 1217-1230, 2021.

 

J34 [TC’20]  A. Roohi, S. Sheikhfaal, S. Angizi, D. Fan and R. F. DeMara, “ApGAN: Approximate GAN for Robust Low Energy Learning from Imprecise Components,” IEEE Transactions on Computers, IEEE, Vol. 69, No. 3, March 2020. 

J33 [TMAG’20] S. Angizi, Z. He, A. Chen and D. Fan, “Hybrid Spin-CMOS Polymorphic Logic Gate with Application in In-Memory Computing,” IEEE Transactions on Magnetics, IEEE, Vol. 56, No. 2, 2020.

J32 [JETC’19] L.Yang, Z. He, S. Angizi, A. S. Rakin and D. Fan, “Sparse BD-Net: A Multiplication-Less DNN with Sparse Binarized Depth-wise Separable Convolution,” ACM Journal on Emerging Technologies in Computing Systems (JETC), Vol. 16, No. 2, 2019. 

J31 [TCAD’19] S. Angizi, Z. He, A. Awad and D. Fan, “MRIMA: An MRAM-based In-Memory Accelerator,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, IEEE, 2019.

J30 [TNANO’18] S. Angizi, H. Jiang, R. F. Demara, J. Han and D. Fan, “Majority-Based Spin-CMOS Primitives for Approximate Computing,” IEEE Transactions on Nanotechnology, IEEE, Vol. 17, No. 4, pp. 795-806, 2018.

J29 [TMSCS’18] Z. He, Y. Zhang, S. Angizi, B. Gong and D. Fan, “Exploring A SOT-MRAM based In-Memory Computing for Data Processing,” IEEE Transactions on Multi-Scale Computing Systems, IEEE, Vol. 4, No. 4, pp. 676-685, 2018.

J28 [TMAG’18] F. Parveen, S. Angizi, Z. He and D. Fan, “IMCS2: Novel Device-to-Architecture Co-design for Low Power In-memory Computing Platform using Coterminous Spin-Switch,” IEEE Transactions on Magnetics, IEEE, Vol. 54, No. 7, 2018.

J27 [JETC’18] F. Parveen, S. Angizi and D. Fan, “ IMFlexCom: Energy Efficient In-memory Flexible Computing using Dual-mode SOT-MRAM,” ACM Journal on Emerging Technologies in Computing Systems, ACM, Vol. 14, No. 3, 2018.

 

J26 [JSS’18] S. Azimi, S. Angizi and M. H. Moaiyeri, “Efficient and Robust SRAM Cell Design Based on Quantum-Dot Cellular Automata,” ECS Journal of Solid State Science and Technology, The Electrochemical Society, Vol. 7, No.3, pp. Q38-Q45, 2018.

J25 [JNO’18] H. Khademolhosseini, S. Angizi and Y. Nemati, “A Fault-Tolerant Design for 3-Input Majority Gate in Quantum-Dot Cellular Automata,” Journal of Nanoelectronics and Optoelectronics, ASP, Vol. 13, No. 1, 2018.

 

J24 [TCAD’18] S. Angizi, Z. He, N. Bagherzadeh and D. Fan, “Design and Evaluation of a Spintronic In-Memory Processing Platform for Non-Volatile Data Encryption,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, IEEE, Vol. 37, No.9, pp. 1788-1801, 2018.

 

J23 [MICT’17] M. H. Moaiyeri, F. Sabetzadeh, and S. Angizi, “An efficient majority-based compressor for approximate computing in the nano era,” Microsystem Technologies, Springer, Vol. 24, No. 3, pp.1589–1601, 2017.

 

J22 [MAGL’17] Z. He, S. Angizi, and D. Fan, “Current Induced Dynamics of Multiple Skyrmions with Domain Wall Pair and Skyrmion-based Majority gate Design”, IEEE Magnetics Letters, IEEE, Vol. 8, March 30, 2017.

J21 [OPT’17] E. Taherkhani, M. H. Moaiyeri, and S. Angizi, “Design of an Ultra-Efficient Reversible Full Adder-Subtractor in Quantum-dot Cellular Automata,” Optik-International Journal for Light and Electron Optics, Elsevier, Vol. 142, August 2017, pp. 557-563, 2017.

 

J20 [MICPRO’17] M. B. Khosroshahy, M. H. Moaiyeri, S. Angizi, N. Bagherzadeh, and K. Navi, "Quantum-Dot Cellular Automata Circuits with Reduced External Fixed Inputs," Microprocessors and Microsystems, Elsevier, Vol. 50, May 2017, pp. 154-163, 2017.

 

J19 [JOLPE’17] Z. Rouhani, S. Angizi, M. Taheri, K. Navi, and N. Bagherzadeh, "Towards Approximate Computing with Quantum- Dot Cellular Automata," Journal of Low Power Electronics, ASP, Vol. 13, No. 1, pp. 29-35, 2017.

 

J18 [MICPRO’17] A. M. Chabi, A. Roohi, H. Khademolhosseini, S. Sheikhfaal, S. Angizi, K. Navi, and R. F. DeMara, “Towards ultra-efficient QCA reversible circuits,” Microprocessors and Microsystems, Vol. 49,  pp. 127-138, 2017. Page 4 /7

J17 [TETC’16] A. Roohi, R. Zand, S. Angizi, and R. F. DeMara, “A Parity-Preserving Reversible QCA Gate with Self-Checking Cascadable Resiliency”, IEEE Transactions on Emerging Topics in Computing, IEEE, Vol. 6, No. 4, pp. 450 - 459, 2018. (Featured Paper)

J16 [QM’16] K. Navi, S. Khammar, S. Angizi, S. Sheikhfaal, and S. Angizi, “Excess Electron Quantum-Dot Cellular Automata Cell,” Quantum Matter, ASP, Vol. 5, no. 1, pp. 188-190, 2016.

 

J15 [JCS’16] F. Ahmad, G. M. Bhat, H. Khademolhosseini, S. Azimi, S. Angizi, and K. Navi, “Towards single layer quantum- dot cellular automata adders based on explicit interaction of cells”, Journal of Computational Science, Elsevier, Vol. 16, No. September 2016, pp. 8-15, 2016.

 

J14 [QM’16] S. Sarmadi, S. Sayedsalehi, M. Fartash, and S. Angizi, “A structured ultra-dense QCA one-bit full-adder cell”, Quantum Matter, ASP, Vol. 5, No. 1, pp. 118-123, 2016.

J13 [MICPRO’15] S. Angizi, M. H. Moaiyeri, S. Farrokhi, K. Navi, and N. Bagherzadeh, “Designing Quantum-dot Cellular Automata Counters with Energy Consumption Analysis”, Microprocessors and Microsystems, Elsevier, Vol. 39, No. 7, pp. 512-520, 2015. (Most Cited Article)

J12 [JCSC’15] S. Angizi, S. Sayedsalehi, A. Roohi, N. Bagherzadeh, and K. Navi, “Design and verification of new n-bit quantum-dot synchronous counters using majority function-based JK flip-flops”, Journal of Circuits, Systems, and Computers, World Scientific, Vol. 24, No. 10, pp. 1-17, 2015.

 

J11 [MEJO’15] S. Angizi, S. Sarmadi, S. Sayedsalehi, and K. Navi, “Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata”, Microelectronics Journal, Elsevier, Vol. 46, No.1, pp. 43-51, 2015. (Most Cited Article)

 

J10 [MEJO’15] S. Sheikhfaal, S. Angizi, S. Sarmadi, M. H. Moaiyeri, and S. Sayedsalehi, “Designing efficient QCA logical circuits with power dissipation analysis”, Microelectronics Journal, Elsevier, Vol. 46, No. 6, pp. 462–471, 2015. (Most Cited Article)

J9 [JOLPE’15] S. Angizi, F. Danehdaran, S. Sarmadi, S. Sheikhfaal, N. Bagherzadeh, and K. Navi, “An Ultra-high Speed and Low Complexity QCA Full Adder”, Journal of Low Power Electronics, ASP, Vol. 11, No. 2, pp. 173-180, 2015.

 

J8 [INS’15] S. Sayedsalehi, M. Rahimi Azghadi, S. Angizi, and K. Navi, “Restoring and Non-Restoring Array Divider Designs in Quantum-dot Cellular Automata”, Information sciences, Elsevier, Vol. 311, pp. 86-101, 2015.

 

J7 [JHPSA’15] S. Mohammadyan, S. Angizi, and K. Navi, “New fully single layer QCA full-adder cell based on feedback model”, Int. J. of High-Performance Systems Architecture, Inderscience, Vol. 5, No. 4, pp. 202 - 208, 2015.

 

J6 [CTN’15] K. Navi, H. Mohammadi, and S. Angizi, “A Novel Quantum-dot Cellular Automata Reconfigurable Majority Gate with 5 and 7 Inputs Support”, Journal of Computational and Theoretical Nanoscience, ASP, Vol. 12, No. 3, pp. 399-406, 2015.

 

J5 [QM’15] S. Sheikhfaal, K. Navi, S. Angizi, and A. Habibizad Navin, “Designing High Speed Sequential Circuits by Quantum- Dot Cellular Automata: Memory Cell and Counter Study”, Quantum Matter, ASP, Vol. 4, No. 2, pp. 190-197, 2015.

J4 [JMEC’15] S. Sarmadi, S. Azimi, S. Sheikhfaal, S. Angizi, “Designing Counter Using Inherent Capability of Quantum-dot Cellular Automata Loops”, International Journal of Modern Education & Computer Science, Vol. 7, No. 9, pp. 22-28, 2015.

 

J3 [JOLPE’14] S. Angizi, E. Alkaldy, N. Bagherzadeh, and K. Navi, “Novel Robust Single Layer Wire Crossing Approach for Exclusive OR Sum of Products Logic Design with Quantum-Dot Cellular Automata”, Journal of Low Power Electronics, ASP, Vol. 10, No. 2, pp. 259-271, 2014.

 

J2 [CTN’14] S. Angizi, K. Navi, S. Sayedsalehi, and A. Habibizad Navin, “Efficient Quantum Dot Cellular Automata Memory Architectures Based on the New Wiring Approach”, Journal of Computational and Theoretical Nanoscience, ASP, Vol. 11, No. 11, pp. 2318-2328, 2014.

 

J1 [ISRN’14] A. M. Chabi, S. Sayedsalehi, S. Angizi, and K. Navi, “Efficient QCA Exclusive-or and Multiplexer Circuits Based on a Nanoelectronic-compatible Designing Approach”, International Scholarly Research Notices , Hindawi, Volume 2014, Article ID 463967, pp. 1-9, 2014.

Book Chapters

B2   S. Angizi, D. Fan, A. Marshall, and P. A. Dowben, “Nonvolatile Memory Based Architectures Using Magnetoelectric FETs,” in a Book entitled “Advances in Semiconductor Technologies: Selected Topics Beyond Conventional CMOS,” John Wiley & Sons, Inc.

B1  A. Roohi, S. Angizi, and D. Fan, “Enabling Edge Computing Using Emerging Memory Technologies: From Device to Architecture” in a Book entitled “Electronic Design for AI, IoT and Hardware Security,” Springer Nature.

bottom of page